
Fieldbus Stack Interface
Reference Manual

March 1996 Edition
Part Number 321015B-01

© Copyright 1996 National Instruments Corporation.
All Rights Reserved.

Internet Support
GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
VISA: visa.support@natinst.com

FTP Site: ftp.natinst.com
Web Address: www.natinst.com

Bulletin Board Support
BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

FaxBack Support
(512) 418-1111 or (800) 329-7177

Telephone Support (U.S.)
Tel: (512) 795-8248
Fax: (512) 794-5678 or (800) 328-2203

International Offices
Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 48301892, Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 202 2544,
Netherlands 03480 33466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 20 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty
The AT-FBUS/H1 Hardware is warranted against defects in materials and workmanship for a period of two
years from the date of shipment, as evidenced by receipts or other documentation. National Instruments
will, at its option, repair or replace equipment that proves to be defective during the warranty period. This
warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute
programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of
shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair
or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation
of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on
the outside of the package before any equipment will be accepted for warranty work. National Instruments
will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been
carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National
Instruments reserves the right to make changes to subsequent editions of this document without prior
notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In
no event shall National Instruments be liable for any damages arising out of or related to this document or
the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO
THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
This limitation of the liability of National Instruments will apply regardless of the form of action, whether in
contract or tort, including negligence. Any action against National Instruments must be brought within one
year after the cause of action accrues. National Instruments shall not be liable for any delay in performance
due to causes beyond its reasonable control. The warranty provided herein does not cover damages,
defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments
installation, operation, or maintenance instructions; owner’s modification of the product; owner’s abuse,
misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other
events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in
whole or in part, without the prior written consent of National Instruments Corporation.

Trademarks
Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of
reliability suitable for use in treatment and diagnosis of humans. Applications of National Instruments
products involving medical or clinical treatment can create a potential for accidental injury caused by product
failure, or by errors on the part of the user or application designer. Any use or application of National
Instruments products for or involving medical or clinical treatment must be performed by properly trained
and qualified medical personnel, and all traditional medical safeguards, equipment, and procedures that are
appropriate in the particular situation to prevent serious injury or death should always continue to be used
when National Instruments products are being used. National Instruments products are NOT intended to be
a substitute for any form of established process, procedure, or equipment used to monitor or safeguard
human health and safety in medical or clinical treatment.

© National Instruments Corporation v Fieldbus Stack Interface Reference Manual

Table
of
Contents

About This Manual
How to Use the Manual Set ..vii
Organization of This Manual..viii
Conventions Used in This Manual..viii
Related Documentation ..ix
Customer Communication ..ix

Chapter 1
Introduction

Background ...1-1
Description..1-1

Chapter 2
Functional Overview

Creation of Bus Descriptors..2-1
Use of Callback Functions..2-1
Asynchronous Calls and User Data ..2-2
Buffer Management ..2-2
Use of Events in Windows 3.1..2-2
Function Return Codes ...2-3
SIL Data Types ...2-3

Chapter 3
SIL Function Calls

List of SIL Function Calls ..3-1
Administrative Calls ...3-1

silOpen ...3-3
silClose...3-6
silGetMessage ..3-7
silPollForIndication..3-8
silSetTimeout ...3-10

Table of Contents

Fieldbus Stack Interface Reference Manual v i © National Instruments Corporation

FMS Calls ...3-11
silInitiate ..3-11
silAbort ..3-13
silRead..3-14
silReadWithType ...3-16
silWrite...3-18
silWriteWithType ..3-20
silGetOD ..3-22
silDefineVariableList ...3-24
silDeleteVariableList ...3-26
silInitGenDomainDownload ..3-27
silGenDownloadSegment ..3-28
silTerminateGenDownload ..3-30
silInfoReport ..3-32
silEvent ..3-34
silAckEvent..3-36
silAlterEventMonitoring ..3-38
silIdentify ...3-40
silStatus ..3-42

System Management Calls ...3-44
silSetPDTag ...3-44
silSetAddress..3-46
silClearAddress ..3-47
silSMIdentify ...3-49
silFindTagQuery ..3-51
silFindTagReply...3-53

Chapter 4
Callback Functions

Confirmation Callback Function ..4-1
Indication Callback Function..4-2
SilResponse Function..4-7

Appendix A
Sample Program ..A-1

Appendix B
Customer Communication..B-1

Tables
Meaning of Indication Callback Parameters...4-3

© National Instruments Corporation v i i Fieldbus Stack Interface Reference Manual

About
This
Manual

This manual describes the functions that comprise the Fieldbus Stack
Interface Library, and is intended for application programmers. The
Fieldbus Stack Interface Library is intended for use with Windows 3.1.

This manual assumes that you are already familiar with the Windows
operating system.

How to Use the Manual Set
Use the Getting Started with Fieldbus manual to install and configure
your AT-FBUS/H1 board, the Fieldbus Stack Interface Library, and the
NI-SHELL Function Block Shell software.

Use the Getting Started with the H1 Fieldbus Device Interface Kit
manual to install and configure your Fieldbus Round Card.

Use the Fieldbus Stack Interface Reference Manual to learn about
writing client application programs that interface to your AT-FBUS/H1
board.

Use the NI-SHELL Function Block Shell Reference Manual to learn
about writing Function Block server applications which interface to
your AT-FBUS/H1 board or which are embedded in the Fieldbus
Round card.

Use the Fieldbus Control Dialog User Manual to learn to use the
interactive Fieldbus dialog system with your AT-FBUS/H1 board.

Use the NI-FMON Fieldbus Monitor User Manual to learn to use the
interactive NI-FMON Fieldbus Monitor utility with your AT-FBUS/H1
board.

About This Manual

Fieldbus Stack Interface Reference Manual v i i i © National Instruments Corporation

Organization of This Manual
This manual is organized as follows:

• Chapter 1, Introduction, gives the background and a description of
the Stack Interface Library.

• Chapter 2, Functional Overview, introduces some key concepts
and provides an overview of the functional components of the
Stack Interface Library.

• Chapter 3, SIL Function Calls, describes the Stack Interface
Library function calls.

• Chapter 4, Callback Functions, describes the callback functions of
the Stack Interface Library.

• Appendix A, Sample Program, contains a sample program using
the Stack Interface Library.

• Appendix B, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on
our products and manuals.

Conventions Used in This Manual
The following conventions are used in this manual:

bold Bold text denotes menus, menu items, or dialog box buttons or options.

italic Italic text denotes emphasis, a cross reference, or an introduction to a
key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that are to be literally input
from the keyboard, sections of code, programming examples, and
syntax examples. This font is also used for the proper names of disk
drives, paths, directories, programs, subprograms, subroutines, device
names, functions, variables, filenames, and extensions, and for
statements and comments taken from program code.

< > Angle brackets enclose the name of a key on the keyboard–for
example, <PageDown>.

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys–for
example, <Control-Alt-Delete>.

About This Manual

© National Instruments Corporation i x Fieldbus Stack Interface Reference Manual

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and
terms are listed in the Glossary.

Related Documentation
The following document contains information that you may find
helpful as you read this manual:

• Fieldbus Standard for Use in Industrial Control Systems Part 2

• Fieldbus Foundation Specification

• Fieldbus Foundation System Management Services

• Function Block Application Process, Part 1

• Function Block Application Process, Part 2

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with
our products, and we want to help if you have problems with them. To
make it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in
Appendix B, Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 Fieldbus Stack Interface Reference Manual

Introduction

Chapter

1
This chapter gives the background and a description of the Stack
Interface Library.

Background

The Stack Interface Library is an Application Programmer’s Interface
(API) for the National Instruments Fieldbus Communication Protocol
Stack. Its most beneficial characteristics are as follows:

• It is an easy-to-use C language interface to the protocol stack.

• Its interface is dependent only on the protocol specification, not the
implementation.

Description

The Stack Interface Library, or SIL, is a method used to interface an
application to the National Instruments Fieldbus Communications
Stack. The SIL allows synchronous and asynchronous calls, and has
callback and event methods for synchronizing with the completion of
asynchronous calls.

This release of the Stack Interface Library is in the form of a Dynamic
Link Library (DLL) for Microsoft Windows 3.1. To use the interface
library, you should do the following:

• Include “silext.h” in any source files that call the SIL.

• Link your application programs with the import library sil.lib.

• Make sure that the file sil.dll is in the Windows execution
path when the user’s application loads.

• Use the large memory model for the application.

• Use the 1-byte structure member alignment for all structures that
communicate with the SIL.

Chapter 1 Introduction

Fieldbus Stack Interface Reference Manual 1-2 © National Instruments Corporation

Both the Import Library and DLL were created with Microsoft Visual
C++ Version 1.5. A sample program is included in Appendix A,
Sample Program.

© National Instruments Corporation 2-1 Fieldbus Stack Interface Reference Manual

Functional Overview

Chapter

2
This chapter introduces some key concepts and provides an overview
of the functional components of the Stack Interface Library.

Several key concepts must be introduced before the function calls are
described. These concepts are:

• Creation of bus descriptors

• Use of callback functions

• Asynchronous calls and “user data”

• Buffer management

• Use of events in Windows 3.1

• Function call return codes

Creation of Bus Descriptors

To send and receive Fieldbus messages over a certain Fieldbus, an
application program must first open the bus. The open call returns a
descriptor, which identifies the open bus. This descriptor is passed to
all subsequent SIL calls to tell them which Fieldbus to operate on.
When the application has finished using a bus, it must call the
silClose function to close the bus descriptor.

Use of Callback Functions

To support asynchronous calls and indications from the Fieldbus, two
callback functions may be registered with the SIL when a bus is
opened. One callback function, the confirmation callback, is called
upon completion of any asynchronous calls. The other callback
function, the indication callback, is called when any indications are
received from the network.

Chapter 2 Functional Overview

Fieldbus Stack Interface Reference Manual 2-2 © National Instruments Corporation

Both callback functions are optional and can be assigned a NULL
value. If the confirmation callback is NULL, asynchronous calls
cannot be used. If the indication callback is NULL, an application has
to poll the SIL to retrieve indications.

Asynchronous Calls and User Data

All calls to the SIL which involve waiting for a response across the
Fieldbus may be called synchronously, which means that the function
does not return until the call has completed entirely; or they may be
called asynchronously, which means that the function returns before the
call has completed.

When an asynchronous call completes, the SIL calls the confirmation
callback function registered when the descriptor was opened. A
user data pointer, a parameter you supply to the function, is returned to
the application as a parameter of the callback function. User data is an
arbitrary pointer; it may point to any data you want to uniquely identify
the call. If the user data value is NULL, the call is synchronous.

Buffer Management

All asynchronous calls which provide buffers for the SIL to fill in with
data must manage those buffers. The buffers must be valid until the
asynchronous call completes. Passing of buffers allocated on a
function’s local stack, for example, is invalid if the function might
return before the asynchronous call completes.

Some buffers are allocated by the SIL; the application must inform the
SIL when these buffers can be freed. Buffers for indication callback
data are allocated by the SIL. The application must call the
silResponse function when it is done processing the buffers so that
the SIL may free them. This requirement is explained further in the
silResponse function description.

Use of Events in Windows 3.1

The SIL implementation under Windows 3.1 requires the application to
periodically call silGetMessage to allow the application’s
callbacks to be called. The callback functions are only called during a
call to silGetMessage.

Chapter 2 Functional Overview

© National Instruments Corporation 2-3 Fieldbus Stack Interface Reference Manual

The calling of silGetMessage can be handled in one of two ways.
The SIL can be configured to send the application a message
(WM_SIL_MESSAGE, defined in silext.h) when
silGetMessage has to be called, or the application may call
silGetMessage periodically.

Function Return Codes

All SIL functions return 0 (zero) on success, and a value less than zero
on failure. The error codes are defined in the header file silext.h.
The cnfErrorType_t structure is used to return error information
for Confirmed FMS service calls. A pointer to this type of structure
must be passed as a parameter to all Confirmed FMS services. The
structure contains a bit mask which indicates what error fields are
present, along with the values of the error fields themselves. The
Confirmed System Management calls use an unsigned 8-bit integer to
return error codes.

SIL Data Types

The SIL uses basic data types defined in the include files types.h
and string_t.h. In addition, SIL-defined data types, structures,
and external prototypes are defined in the include file silext.h. In
order to use the SIL, you must include “silext.h” in the source
files. types.h and string_t.h are automatically included from
within silext.h.

© National Instruments Corporation 3-1 Fieldbus Stack Interface Reference Manual

SIL Function Calls

Chapter

3
This chapter describes the Stack Interface Library function calls.

List of SIL Function Calls

Administrative Calls
silOpen Open a bus descriptor

silClose Close a bus descriptor

silGetMessage Allow callbacks to occur in Windows 3.1

silPollForIndication Check for new indications

silSetTimeout Set timeout for synchronous calls

FMS Calls
silInitiate Perform FMS initiate

silAbort Perform FMS abort

silRead Perform FMS read

silReadWithType Perform FMS read with type

silWrite Perform FMS write

silWriteWithType Perform FMS write with type

silGetOD Perform FMS get-od

silDefineVarList Perform FMS define variable list

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-2 © National Instruments Corporation

silInitGenDomainDownloadPerform FMS Initiate Generic Domain
Download

silGenDownloadSegment Perform FMS Generic Download Segment

silTerminateGenDownload Perform FMS Terminate Generic Domain
Download

silInfoReport Perform FMS information report

silEvent Perform FMS event notification

silAckEvent Perform FMS event acknowledgment

silAlterEventMonitoring Perform FMS alter event condition monitoring

silIdentify Perform FMS identify

silStatus Perform FMS status

System Management Calls
silSetPDTag Perform SM Set Physical Device Tag

silSetAddress Perform SM Set Device Address

silClearAddress Perform SM Clear Device Address

silSMIdentify Perform SM Device Identify

silFindTagQuery Perform SM Find Tag Query

silFindTagReply Perform SM Find Tag Reply

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-3 Fieldbus Stack Interface Reference Manual

silOpen Administrative Calls

Purpose
Open an interface to a specified Fieldbus communications stack.

Format

int32 silOpen(uint8 boardNo, uint8 reserved2, uint16 indBufSz,

indicationFunction_t ind, confirmFunction_t conf

silDesc_t *desc, void *osDep)

Includes

#include “silext.h”

Parameters
IN boardNo Index of the board in the board configuration

file. Must be in the range 0-(numboards-1).
IN reserved2 Reserved for future use. Must be set to zero.
IN indBufSz The size in bytes to reserve for indication

processing.
IN ind The callback function, if any, to handle

indications from this bus.
IN conf The callback function, if any, to handle

confirmations from this bus.
IN osDep OS-dependent parameter. See description.
OUT desc The descriptor for this bus, to be used in future

calls to the SIL.

Return Values
Zero on success, less than zero on error.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-4 © National Instruments Corporation

silOpen Administrative Calls

Continued

Description
This call opens an interface to a communications stack associated with the specified
Fieldbus board. In Windows 3.1, this is the index of the board in the win.ini file. For
more information about board configuration using win.ini, see the Getting Started
with Fieldbus manual.

The “reserved2” parameter is reserved for future use, and must be set to zero to ensure
proper operation of this function.

If you plan to handle indications with the callback method, you must specify the buffer
size (indBufSz) for the SIL to use for indications on this connection. The SIL allocates
this buffer at open time and free the buffer when this descriptor is closed. A buffer size
of at least 1024 bytes is recommended if indication callbacks are to be used.

This call registers an optional indication callback to handle incoming indications and an
optional confirmation callback to handle returned confirmations. The format of these
callbacks is described in Chapter 4, Callback Functions.

If the indication callback parameter ind is NULL, you must call
silPollForIndication (see function description later in this chapter) to handle
indications. If the confirmation callback parameter conf is NULL, only synchronous
calls can be used with the descriptor desc.

The osDep parameter’s use is operating-system dependent. In Windows 3.1, osDep
can point to a window handle to notify the window when silGetMessage should be
called. The message WM_SIL_MESSAGE is sent to the specified window when
indications or confirmations come in. The message contains the descriptor value in the
Windows parameter lparam. In Windows 3.1, if the osDep parameter is NULL,
messages are not sent to the application, and you must call silGetMessage
periodically to receive callbacks for indications or confirmations.

Note: osDep must be set to point to the valid window handle; it should not
contain the actual value of the handle.

This call is synchronous.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-5 Fieldbus Stack Interface Reference Manual

silOpen Administrative Calls

Continued

Possible Errors
SIL_RESOURCES Internal buffers or structures cannot be allocated.
SIL_BUS_CONFLICT This bus has already been opened.
SIL_HARDWARE_FAILURE The Fieldbus board is not responding to

messages.
SIL_BAD_CONFIG The software configuration data for the board is

invalid or incomplete.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-6 © National Instruments Corporation

silClose Administrative Calls

Purpose
Close the interface specified by the descriptor.

Format

int32 silClose(silDesc_t desc)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for the bus to be closed.

Return Values
Zero on success, less than zero on error.

Description
This function tells the SIL to free any resources associated with the given descriptor. The
specified descriptor can no longer be used, and any registered callbacks will no longer be
called by the SIL.

This call is synchronous.

Possible Errors
SIL_BAD_DESCRIPTOR The descriptor is invalid.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-7 Fieldbus Stack Interface Reference Manual

silGetMessage Administrative Calls

Purpose
Function specific to Windows 3.1 for processing messages from the bus.

Format

int32 silGetMessage(silDesc_t desc)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for the bus to be checked

for messages.

Return Values
Zero on success, less than zero on error.

Description
The meaning of this function depends on the operating system. In Windows 3.1, this
function must be called to allow indication and confirmation callbacks. If this function
is not called, only synchronous calls may be used; callbacks would never occur. In
Windows 3.1, this function should either be called periodically, or whenever the SIL
sends a message to the window specified in silOpen.

This function is synchronous. Callbacks to your code may occur during the call to this
function.

Possible Errors
SIL_BAD_DESCRIPTOR The descriptor is invalid.
SIL_BAD_INDICATION An error occurred processing an indication.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-8 © National Instruments Corporation

silPollForIndication Administrative Calls

Purpose
Check to see if any indications have arrived on the specified bus.

Format

int32 silPollForIndication (silDesc_t desc, uint16 *vcr, uint16

*userData, silFunctionCode_t *fcode, uint8 *needResp,

uint16 *index, uint16 *subindex, uint32 *extra,

void *data, uint8 *dataLen)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for the bus to be checked.
IN dataLen Service-specific value.
OUT vcr The VCR for which the indication arrived.
OUT userData The invoke ID of the indication.
OUT fCode The function code of the indication.
OUT needResp Indicates whether or not silResponse must

be called.
OUT index Service-specific value.
OUT subindex Service-specific value.
OUT extra Service-specific value.
OUT data Service-specific value.
OUT dataLen Service-specific value.

Return Values
Zero on success, less than zero on error.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-9 Fieldbus Stack Interface Reference Manual

silPollForIndication Administrative Calls

Continued

Description
This function polls the SIL to determine if a new indication has come in since the last call
of this function. silPollForIndication is only meaningful if the indication
callback function passed to silOpen was NULL. The return value is zero if an
indication has arrived. The return value is less than zero if an error occurred or if no
indications are available.

The application must have already allocated the buffer data, and *dataLength must
be set to the size of data on entry. The SIL sets *dataLength to the actual size of
any data in the indication upon return.

The service-specific parameters are described in Table 4-1, Meaning of Indication
Callback Parameters.

This call is synchronous.

Possible Errors
SIL_NO_INDICATIONS No indications are waiting to be read.
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_INVALID_CALL This descriptor has an indication callback.
SIL_BAD_INDICATION An error occurred in decoding the next indication

(that is, some sort of error in the packet
occurred).

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-10 © National Instruments Corporation

silSetTimeout Administrative Calls

Purpose
Set the synchronous call timeout for the specified descriptor.

Format

int32 silSetTimeout(silDesc_t desc, silTimeout_t tmo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN tmo The timeout in milliseconds to wait for

synchronous calls.

Return Values
Zero on success, less than zero on error.

Description
This function sets the timeout value that the SIL waits for a synchronous call to complete.
The value specified is in milliseconds. When the timeout for the descriptor has expired,
the synchronous calls return a timeout error (SIL_TIMEOUT).

A timeout does not cause an abort to be sent on the VCR when a synchronous call times
out. To abort the VCR, the user must call silAbort (see function description later in
this chapter).

This call is synchronous.

Possible Errors
SIL_BAD_DESCRIPTOR The descriptor is invalid.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-11 Fieldbus Stack Interface Reference Manual

silInitiate FMS Calls

Purpose
Perform an FMS initiate.

Format

int32 silInitiate (silDesc_t desc, uint16 vcr, userData_t

userData, int16 odVersion, uint16 profile, uint8

accProt, uint8 password, uint8 accGroups,

bool_t *success, silInitiateResponse_t *resp)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN odVersion The FMS “OD Version” Initiate

service parameter.
IN profile The FMS “Profile” Initiate service parameter.
IN accProt The FMS “Access Protection” Initiate

service parameter.
IN password The FMS “Password” Initiate service parameter.
IN accGroups The FMS “Access Groups” Initiate

service parameter.
OUT success Success code of the FMS service

(nonzero for success, zero for failure).
OUT resp The response from the other side,

whether positive or negative.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-12 © National Instruments Corporation

silInitiate FMS Calls

Continued

Return Values
Zero on success, less than zero on error.

Description
This call performs the FMS initiate function to open a communications channel to an
FMS entity on a remote device located across the specified descriptor. The response
packet is returned in resp. The value of the resp parameter takes on either the positive
or negative forms depending on whether FMS returned a positive or negative response.
To determine the error status of the call, first check the return value of the function call.
If the return value is zero, the FMS initiate packet was sent out correctly; otherwise, an
error occurred before the call was sent out. Next, check the value of success. If FMS
returned a positive response, success is TRUE; otherwise, success is set to FALSE.
The caller can use the userData parameter to specify data that is returned to the
confirmation callback. If userData is NULL, the call is synchronous.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-13 Fieldbus Stack Interface Reference Manual

silAbort FMS Calls

Purpose
Perform an FMS abort.

Format

int32 silAbort(silDesc_t desc, uint16 vcr, int8 reason)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN reason The FMS abort “Reason Code” parameter.

Return Values
Zero on success, less than zero on error.

Description
This function performs an FMS abort service. The FMS parameter “Locally Generated”
is set to FALSE, and “Abort Identifier” is set to USER to indicate that the user layer
requested the abort. See the FMS specification for the values for reason.

This is an unconfirmed synchronous call.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-14 © National Instruments Corporation

silRead FMS Calls

Purpose
Perform an FMS read.

Format

int32 silRead (silDesc_t desc, uint16 vcr, userData_t userData,

uint16 index, uint16 subindex, void *data, uint8

*dataLen, cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to any data that identifies the

asynchronous call, or NULL to make
the call synchronous.

IN index The “Index” parameter to the FMS read service.
IN subindex The “Subindex” parameter to the FMS read

service. The service parameter is omitted if
this parameter has the reserved value
SIL_INVALID_SUBINDEX.

IN/OUT dataLen The length of the data read by the FMS read
service.

OUT data The buffer to hold the data resulting from the
FMS read service.

OUT errInfo The FMS confirmed service error data if the
service fails.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-15 Fieldbus Stack Interface Reference Manual

silRead FMS Calls

Continued

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS read request on the specified VCR. The response data is
returned in data when the confirmation callback for the descriptor has been called with
the userData specified in this call. The dataLength variable must be set to the
length of the data buffer on entry. When the call completes, dataLength is set to the
length of the data read. If the call failed, the error code information returns in errInfo.

Possible Errors

SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-16 © National Instruments Corporation

silReadWithType FMS Calls

Purpose
Perform an FMS Read with Type.

Format

int32 silReadWithType (silDesc_t desc, uint16 vcr,

userData_t userData, uint16 index, uint16 subindex,

silTypeDesc_t *type, uint8 *maxTypes, void *data,

uint8 *dataLength, cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN index The “Index” parameter to the FMS Read service.
IN subindex The “Subindex” parameter to the FMS Read

service. The service parameter is omitted if
this parameter has the reserved value
SIL_INVALID_SUBINDEX.

IN/OUT *maxTypes
IN The length of the pre-allocated array “type.”
OUT The actual number of elements returned in

“type.”
IN/OUT dataLen The length of the data resulting from the FMS

Read With Type service.
OUT type The array of buffers to hold the type information

resulting from the service.
OUT data The buffer to hold the data resulting from the

FMS Read With Type service.
OUT errInfo The FMS confirmed service error data if the

service fails.

Return Values
Zero on success, less than zero on error.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-17 Fieldbus Stack Interface Reference Manual

silReadWithType FMS Calls

Continued

Description
This call performs an FMS Read With Type Request on the specified VCR. The
response type information is placed in the type parameter.

The type parameter is an array of type description buffers. In most cases, the length of
the array (passed in the maxTypes parameter) need only be one element, and the type
parameter may point to a single buffer of type silTypeDesc_t. However, if the
object being read is a variable list, then the array must be as long as the number of
elements in the variable list. For example, to read a five-element variable list, you must
allocate a five or more element type array, and set maxTypes to at least five to hold all
of the data.

The response data is returned in data when the confirmation callback for the descriptor
has been called with the userData specified in this call. The dataLength variable
must be set to the length of the data buffer on entry. When the call completes,
dataLength is set to the length of the data read. maxTypes is set to the number of
elements returned in the type array. If the call failed, the error code information is
returned in errInfo.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-18 © National Instruments Corporation

silWrite FMS Calls

Purpose
Perform an FMS write.

Format

int32 silWrite(silDesc_t desc, uint16 vcr, userData_t userData,

uint16 index, uint16 subindex, void *data,

uint8 dataLen, cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the
asynchronous

call, or NULL to make the call synchronous.
IN index The “Index” parameter to the FMS write service.
IN subindex The “Subindex” parameter to the FMS write

service. The service parameter is omitted if
this parameter has the reserved value
SIL_INVALID_SUBINDEX.

IN data The “Data” parameter to the FMS write service.
IN dataLen The length in bytes of the data for the

FMS write service.
OUT errInfo The FMS confirmed service error data if the

service fails.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-19 Fieldbus Stack Interface Reference Manual

silWrite FMS Calls

Continued

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS write request on the specified VCR. The confirmation
callback for the descriptor is called with this userData when the call is completed. If
an error occurred, the confirmation callback is informed and errInfo is set to the error.
The errInfo parameter is not valid until the confirmation callback for this descriptor
has been called with the userData for this particular call. The caller can use the
userData parameter to specify data that returns to the confirmation callback.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-20 © National Instruments Corporation

silWriteWithType FMS Calls

Purpose
Perform an FMS Write with Type.

Format

int32 silWriteWithType(silDesc_t desc, uint16 vcr,

userData_t userData, uint16 index, uint16 subindex,

silTypeDesc_t *type, uint8 numTypes, void *data,

uint8 dataLen, cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN index The “Index” parameter to the FMS Write With

Type service.
IN subindex The “Subindex” parameter to the FMS Write

With Type service. The service parameter is
omitted if this parameter has the reserved
value SIL_INVALID_SUBINDEX.

IN type The “Type” parameter to the FMS Write With
Type service.

IN numTypes The number of list elements if this is a variable
list, otherwise, set to 1.

IN data The “Data” parameter to the FMS Write With
Type service.

IN dataLen The length in bytes of the data for the FMS
Write
With Type service.

OUT errInfo The FMS confirmed service error data if the
service fails.

Return Values
Zero on success, less than zero on error.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-21 Fieldbus Stack Interface Reference Manual

silWriteWithType FMS Calls

Continued

Description
This call performs an FMS Write With Type Request on the specified VCR.

The type parameter is an array of type description buffers. In most cases, the length of
the array (passed in the numTypes parameter) need only be one element, and the type
parameter may point to a single buffer of type silTypeDesc_t. However, if the
object being written is a variable list, then the array must be as long as the number of
elements in the variable list. For example, to write a five-element variable list, you must
allocate a five or more element type array, and set numTypes to at least five to hold all
of the data.

The confirmation callback for the descriptor is called with this userData when the call
is completed. If an error occurred, the confirmation callback is informed, and errInfo
is set to the error value. Note that the errInfo parameter is not valid until the
confirmation callback for this descriptor has been called with the userData for this
particular call. The parameter userData can be used by the caller to specify data that is
returned to the confirmation callback.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-22 © National Instruments Corporation

silGetOD FMS Calls

Purpose
Perform an FMS GetOD.

Format

int32 silGetOD(silDesc_t desc, uint16 vcr, userData_t userData,

uint8 form, uint16 index, bool_t readMult,

uint8 *numObjs, void *data, uint8 *dataLen,

bool_t *moreFollows, cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN form The “All attributes” parameter to the FMS

GetOD service.
IN index The “Index” parameter to the

FMS GetOD service.
IN readMult This parameter specifies whether to read a

single OD entry or multiple OD entries. A value
of zero indicates a single entry, while nonzero
indicates multiple entries.

OUT numObjs This parameter contains the number of entries
returned by the GetOD service.

OUT data The “Data” parameter to hold the result of the
FMS GetOD service.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-23 Fieldbus Stack Interface Reference Manual

silGetOD FMS Calls

Continued
OUT dataLen The length in bytes of the data for the

FMS GetOD service.
OUT moreFollows Boolean flag indicating whether more entries

exist in the OD after the ones returned by this
call.

OUT errInfo The FMS confirmed service error data if the
service fails.

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS GetOD request. The parameter form specifies the short or
long form of the OD. If readMult is nonzero, index is interpreted as the start index
for reading the rest of the OD. The initial value for dataLength must be the length of
the buffer data. The response data is placed in the data buffer when the confirmation
callback for the descriptor is called, and the dataLength parameter is changed to the
actual data length at that time. The caller can use the userData parameter to specify
data that is returned to the confirmation callback. The numObjs parameter contains the
number of responses in the returned data buffer.

If an error occurred, data is invalid and errInfo is set to the error which occurred. If
readMult was TRUE, and if more responses are to follow, moreFollows is set to
TRUE. In this case, to continue reading data, you must call silGetOD again, with the
object dictionary index incremented by the number of objects already read.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-24 © National Instruments Corporation

silDefineVariableList FMS Calls

Purpose
Perform an FMS Define Variable List.

Format

int32 silDefineVarList(silDesc_t desc, uint16 vcr,

userData_t userData, uint16 indices[],

uint8 numIndices, uint16 *listIndex,

uint8 *accessProt, string_t extension,

cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN indices The array of object indices to serve as the “List

of Variables” parameter to the FMS Define
Variable List service.

IN numIndices The number of elements in the indices array.
IN accessProt The access groups, access rights, and password

protection for the variable list.
IN extension The “extension” parameter to the FMS Define

Variable List service.
OUT listIndex The index of the list object created, returned by

the service if successful.
OUT errInfo The FMS confirmed service error data if the

service fails.

Return Values
Zero on success, less than zero on error.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-25 Fieldbus Stack Interface Reference Manual

silDefineVariableList FMS Calls

Continued

Description
This call performs an FMS Define Variable List request. If the call succeeds,
listIndex is set to the index of the newly created variable list. The indices
parameter specifies all of the indices that make up the variable list.

The accessProt parameter is a 32-bit-long bit string, encoded according to the FMS
specification as follows:

Bits 0-7: Password_bit8 - Password_bit1
Bits 8-15: Access_groups8 - Access_groups1
Bits 17-19: Dg, Wg, Rg
Bits 21-23: D, W, R
Bits 29-31: Da, Wa, Ra

The confirmation callback for the descriptor is called with this userData when the call
is completed. If an error occurred, the confirmation callback is informed, and errInfo
is set to the error value. Note that the errInfo parameter is not valid until the
confirmation callback for this descriptor has been called with the userData for this
particular call. The parameter userData can be used by the caller to specify data that is
returned to the confirmation callback.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-26 © National Instruments Corporation

silDeleteVariableList FMS Calls

Purpose
Perform an FMS Define Variable List.

Format

int32 silDeleteVarList(silDesc_t desc, uint16 vcr,

userData_t userData, uint16 index,

cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN index The index of the variable list to be deleted.
OUT errInfo The FMS confirmed service error data if the

service fails.

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS Delete Variable List request. If successful, the list specified
by index is deleted.

The confirmation callback for the descriptor is called with this userData when the call
is completed. If an error occurred, the confirmation callback is informed, and errInfo
is set to the error value. Note that the errInfo parameter is not valid until the
confirmation callback for this descriptor has been called with the userData for this
particular call. The parameter userData can be used by the caller to specify data that
is returned to the confirmation callback.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-27 Fieldbus Stack Interface Reference Manual

silInitGenDomainDownload FMS Calls

Purpose
Perform an FMS Initiate Generic Domain Download.

Format

int32 silInitGenDomainDownload (silDesc_t desc, uint16 vcr,

userData_t userData, uint16 index,

cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN index The index of the domain to be downloaded.
OUT errInfo The FMS confirmed service error data if the

service fails.

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS Initiate Generic Domain Download request.

The confirmation callback for the descriptor is called with this userData when the call
is completed. If an error occurred, the confirmation callback is informed, and errInfo
is set to the error value. Note that the errInfo parameter is not valid until the
confirmation callback for this descriptor has been called with the userData for this
particular call. The parameter userData can be used by the caller to specify data that
is returned to the confirmation callback.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-28 © National Instruments Corporation

silGenDownloadSegment FMS Calls

Purpose
Perform an FMS Generic Download Segment.

Format

int32 silGenDownloadSegment (silDesc_t desc, uint16 vcr,

userData_t userData, uint16 index, void *data,

uint8 dataLength, uint8 moreFollows,

cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN index The index of the domain whose segment is to be

downloaded.
IN data The data representing the segment to be

downloaded.
IN dataLength The length of the data to be downloaded.
IN moreFollows The “more follows” parameter to the FMS

Generic Download Segment service.
OUT errInfo The FMS confirmed service error data if the

service fails.

Return Values
Zero on success, less than zero on error.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-29 Fieldbus Stack Interface Reference Manual

silGenDownloadSegment FMS Calls

Continued

Description
This call performs an FMS Generic Download Segment request. The specified segment
of data is downloaded if the call succeeds.

The confirmation callback for the descriptor is called with this userData when the call
is completed. If an error occurred, the confirmation callback is informed, and errInfo
is set to the error value. Note that the errInfo parameter is not valid until the
confirmation callback for this descriptor has been called with the userData for this
particular call. The parameter userData can be used by the caller to specify data that
is returned to the confirmation callback.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-30 © National Instruments Corporation

silTerminateGenDownload FMS Calls

Purpose
Perform an FMS Terminate Generic Download.

Format

int32 silTerminateGenDownload(silDesc_t desc, uint16 vcr,

userData_t userData, uint16 index, uint8 *result,

cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN index The index of the domain whose download is to

be terminated.
OUT result The “result” parameter returned by the FMS

Terminate Generic Download service.
OUT errInfo The FMS confirmed service error data if the
service fails.

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS Terminate Generic Download request. The result of the
download is returned by the remote device in result if the call succeeds.

The confirmation callback for the descriptor is called with this userData when the call
is completed. If an error occurred, the confirmation callback is informed, and errInfo
is set to the error value. Note that the errInfo parameter is not valid until the
confirmation callback for this descriptor has been called with the userData for this
particular call. The parameter userData can be used by the caller to specify data that
is returned to the confirmation callback.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-31 Fieldbus Stack Interface Reference Manual

silTerminateGenDownload FMS Calls

Continued

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-32 © National Instruments Corporation

silInfoReport FMS Calls

Purpose
Perform an FMS Information Report.

Format

int32 silInfoReport (silDesc_t desc, uint16 vcr, uint16 index,

uint16 subindex, void *data, uint8 dataLen)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN index The “Index” parameter to the

FMS Information Report service.
IN subindex The “Subindex” parameter to the

FMS Information Report service.
IN data The “Data” parameter to the

FMS Information Report service.
IN dataLen The length in bytes of the data for the

FMS Information Report service.

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS Information Report request. No response packets return,
because this is an unconfirmed service.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-33 Fieldbus Stack Interface Reference Manual

silInfoReport FMS Calls

Continued

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_BUSY An internal error is detected.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-34 © National Instruments Corporation

silEvent FMS Calls

Purpose
Perform an FMS Event Notification.

Format
int32 silEvent (silDesc_t desc, uint16 vcr, uint16 index,

uint16 number, void *data, uint8 length)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN index The “Index” parameter to the

FMS Event Notification service.
IN number The “Event number” parameter to the

FMS Event Notification service.
IN data The “Data” parameter to the

FMS Event Notification service.
IN dataLen The length in bytes of the data for the

FMS Event Notification service.

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS Event Notification request. The number parameter refers to
the event number according to the FMS specification. No response packets is returned
because this is an unconfirmed service.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-35 Fieldbus Stack Interface Reference Manual

silEvent FMS Calls

Continued

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-36 © National Instruments Corporation

silAckEvent FMS Calls

Purpose
Perform an FMS Acknowledge Event Notification.

Format

int32 silAckEvent (silDesc_t desc, uint16 vcr, userData_t

userData, uint16 index, uint16 number,

cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the

asynchronous call, or NULL to make the call
synchronous.

IN index The “Index” parameter to the
FMS Acknowledge Event Notification service.

IN number The “Event number” parameter to the
FMS Acknowledge Event Notification service.

OUT errInfo The FMS confirmed service error data if the
service fails.

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS Acknowledge Event Notification request. It should be used
by a device after the device has received and processed an FMS Event Notification
Indication.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-37 Fieldbus Stack Interface Reference Manual

silAckEvent FMS Calls

Continued

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-38 © National Instruments Corporation

silAlterEventMonitoring FMS Calls

Purpose
Perform an FMS Alter Event Condition Monitoring request.

Format

int32 silAlterEventMonitoring (silDesc_t desc, uint16 vcr,

userData_t userData, uint16 index, bool_t enabled,

cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the

asynchronous call, or NULL to make the call
synchronous.

IN index The “Index” parameter to the FMS Alter Event
Condition Monitoring service.

IN enabled The “Enabled” parameter to the
FMS Alter Event Condition Monitoring service.

OUT errInfo The FMS confirmed service error data if the
service fails.

Return Values
Zero on success, less than zero on error.

Description
This call performs an FMS Alter Event Condition Monitoring request. It should be used
to enable or disable a device for reporting the specified event.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-39 Fieldbus Stack Interface Reference Manual

silAlterEventMonitoring FMS Calls

Continued

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-40 © National Instruments Corporation

silIdentify FMS Calls

Purpose
Perform an FMS Identify request.

Format

int32 silIdentify (silDesc_t desc, uint16 vcr,

userData_t userData, string_t *vendorName,

string_t *modelName, string_t *revision,

cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the

asynchronous call, or NULL to make the call
synchronous.

OUT vendorName The vendor name returned by the
Identify service.

OUT modelName The model name returned by the Identify service.
OUT revision The revision string returned by the

Identify service.
OUT errInfo The FMS confirmed service error data

if the service fails.

Return Values
Zero on success, less than zero on error.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-41 Fieldbus Stack Interface Reference Manual

silIdentify FMS Calls

Continued

Description
This call performs an FMS Identify Request on the specified VCR. The confirmation
callback for the descriptor is called with this userData when the call is completed.

The parameters vendorName, modelName, and revision must point to usable
buffers on input, and have their lengths set to the size of the buffers. When confirmation
is received, the buffers are filled in and the lengths set accordingly. If the buffers are too
small, as much of the strings as possible are copied into them.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-42 © National Instruments Corporation

silStatus FMS Calls

Purpose
Perform an FMS Status request.

Format

int32 silStatus(silDesc_t desc, uint16 vcr, userData_t userData,

uint8 *logicalStatus, uint8 *physicalStatus,

uint8 *localDetailPresent, uint32 *localDetail,

cnfErrorType_t *errInfo)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN vcr The VCR under which to operate.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
OUT logicalStatus The logical status code returned by the

Status service.
OUT physicalStatus The physical status code returned by the

Status service.
OUT localDetailPresent A flag representing whether the local detail

value is present.
OUT localDetail The local detail value (if any) returned by the

Status service.
OUT errInfo The FMS confirmed service error data if the

service fails.

Return Values
Zero on success, less than zero on error.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-43 Fieldbus Stack Interface Reference Manual

silStatus FMS Calls

Continued

Description
This call performs an FMS status request on the specified VCR.

If the localDetail parameter is specified by the server, localDetailPresent is
set to nonzero and localDetail is set to the bit string supplied by the server.
Otherwise, localDetailPresent is zero and the value of localDetail should be
ignored. If localDetail is supplied, only the lowest 24 bits are used. The user
should mask off the upper 8 bits.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM The call was synchronous and a negative

confirmation was received.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-44 © National Instruments Corporation

silSetPDTag System Management Calls

Purpose
Perform an SM Set Physical Device Tag service.

Format

int32 silSetPDTag(silDesc_t desc, userData_t userData,

string_t pdTag, dlAddr_t nodeAddress,

string_t deviceID, bool_t clear,

uint8 *errorCode)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN pdTag The tag to use.
IN nodeAddress The address of the device.
IN deviceID The System Management ID of the device.
IN clear Indicates whether or not to clear the device’s

tag.
OUT errorCode The SM error code if the service fails.

Return Values
Zero on success, less than zero on error.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-45 Fieldbus Stack Interface Reference Manual

silSetPDTag System Management Calls

Continued

Description
This call performs an SM Set Physical Device Tag service. Both the node address and
the device ID of the target device must be specified. If clear is nonzero, the pdTag
parameter is ignored, and the device’s tag is cleared.

The confirmation callback for the descriptor is called with this userData when the call
is completed. If an error occurred, the confirmation callback is informed, and errInfo
is set to the error value. Note that the errInfo parameter is not valid until the
confirmation callback for this descriptor has been called with the userData for this
particular call. The parameter userData can be used by the caller to specify data that is
returned to the confirmation callback.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-46 © National Instruments Corporation

silSetAddress System Management Calls

Purpose
Perform an SM Set Address service.

Format

int32 silSetAddress(silDesc_t desc, userData_t userData,

string_t pdTag, dlAddr_t nodeAddress,

uint8 *errorCode)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN pdTag The tag of the device whose address is to be set.
IN nodeAddress The new address of the device.
OUT errorCode The SM error code if the service fails.

Return Values
Zero on success, less than zero on error.

Description
This call performs an SM Set Device Address service The tag of the target device must
be specified.

The confirmation callback for the descriptor is called when the call is completed. If an
error occurs, the confirmation callback is informed, and errorCode is set to the error.
Note that the errorCode parameter is not valid until the confirmation callback for this
descriptor has been called for this particular call. The parameter userData can be
used by the caller to specify data that is returned to the confirmation callback.

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-47 Fieldbus Stack Interface Reference Manual

silClearAddress System Management Calls

Purpose
Perform an SM Clear Address service.

Format

int32 silClearAddress(silDesc_t desc, userData_t userData,

string_t pdTag, dlAddr_t nodeAddress,

string_t deviceID, uint8 *errorCode)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN pdTag The tag of the device whose address is to be

cleared.
IN nodeAddress The address of the device whose address is to be

cleared.
IN deviceID The device ID of the device whose address is to

be cleared.
OUT errorCode The SM error code if the service fails.

Return Values
Zero on success, less than zero on error.

Description
This call performs an SM Clear Device Address service The tag, address, and ID of the
target device must be specified.

The confirmation callback for the descriptor is called when the call is completed. If an
error occurs, the confirmation callback is informed, and errorCode is set to the error.
Note that the errorCode parameter is not valid until the confirmation callback for this
descriptor has been called for this particular call. The parameter userData can be
used by the caller to specify data that is returned to the confirmation callback.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-48 © National Instruments Corporation

silClearAddress System Management Calls

Continued

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-49 Fieldbus Stack Interface Reference Manual

silSMIdentify System Management Calls

Purpose
Perform an SM Identify service.

Format

int32 silSMIdentify(silDesc_t desc, userData_t userData,

dlAddr_t nodeAddress, string_t *pdTag,

string_t *deviceID, uint8 *errorCode)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN userData A pointer to data that identifies the asynchronous

call, or NULL to make the call synchronous.
IN nodeAddress The address of the device to identify.
OUT pdTag The tag of the device.
OUT deviceID The device ID of the device.
OUT errorCode The SM error code if the service fails.

Return Values
Zero on success, less than zero on error.

Description
This call performs an SM Identify service The node address of the target device must be
specified.

The confirmation callback for the descriptor is called when the call is completed. If an
error occurs, the confirmation callback is informed, and errorCode is set to the error.
Note that the errorCode parameter is not valid until the confirmation callback for this
descriptor has been called for this particular call. The parameter userData can be
used by the caller to specify data that is returned to the confirmation callback.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-50 © National Instruments Corporation

silSMIdentify System Management Calls

Continued

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-51 Fieldbus Stack Interface Reference Manual

silFindTagQuery System Management Calls

Purpose
Perform a System Management Find Tag Query.

Format

int32 silFindTagQuery (silDesc_t desc, uint8 queryID,

dlAddr_t destAddress, findTag_t type, string_t pdTag,

string_t vfdOrFBTag, uint32 paramID,

uint8 *errorCode)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN queryID The “Query-ID” parameter for the Find Tag

service. This must be a unique identifier,
because it is used to identify the Find Tag Reply
indications resulting from this call.

IN destAddress The “Dest-addr” service parameter.
IN type The type of object being searched for: Physical

Device (FIND_PD), Virtual Field Device
(FIND_VFD), Function Block (FIND_FB), or
parameter (FIND_FB_PARAM).

IN pdTag The tag of the physical device to be located.
IN vfdOrFBTag The tag of the Virtual Field Device or Function

Block to be located.
IN paramID The 32 bit parameter identifier of the parameter

to be located.
OUT errorCode The System Management service error code.

This value is only valid if the service failed
(in this case, the function will have returned
SIL_NEGATIVE_CONFIRM).

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-52 © National Instruments Corporation

silFindTagQuery System Management Calls

Continued

Return Values
Zero on success, less than zero on error.

Description
This call performs a System Management Find Tag Query request. This call is special in
that the confirmation that is returned does not contain the result of the query; it only
contains information indicating whether or not the request was sent. When the other
station responds to the query, a Find Tag Reply indication arrives at the descriptor’s
indication callback.

The queryID parameter is returned in the Find Tag Reply indication, when it occurs.
The type parameter specifies the type of tag you are searching for: Physical Device tag,
VFD tag, FB tag, or FB Parameter tag. The destAddress parameter specifies who to
send the query to.

In the case of a VFD tag search, both the pdTag and vfdOrFBTag must be filled in. In
the case of a FB tag search, or FB parameter tag search, only the vfdOrFBTag must be
filled in; pdTag is ignored.

Note: This call does not wait for the first Find Tag Reply; instead, it returns
when the request is sent out. The return value of the call indicates only
whether the request was sent.

Possible Errors
SIL_BAD_DESCRIPTOR If descriptor was invalid.
SIL_RESOURCES If no RAM available.
SIL_NEGATIVE_CONFIRM If a negative confirmation occurred.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-53 Fieldbus Stack Interface Reference Manual

silFindTagReply System Management Calls

Purpose
Perform a System Management Find Tag reply.

Format

int32 silFindTagReply (silDesc_t desc, uint8 queryID,

dlAddr_t destAddress, findTag_t type, vfdRef_t vfd,

uint16 odIndex, uint16 odVersion, uint8 *errorCode)

Includes

#include “silext.h”

Parameters
IN desc The descriptor for this bus.
IN queryID The “Query-ID” parameter for the Find Tag Reply

service. This must be the query ID of the Find Tag
Query that this reply is for.

IN destAddress The “Dest-addr” service parameter.
IN type The type of object being searched for: Physical

Device (FIND_PD), Virtual Field Device
(FIND_VFD), Function Block (FIND_FB), or
parameter (FIND_FB_PARAM).

IN vfd The “VFD” service parameter.
IN odIndex The “Index” service parameter.
IN odVersion The “OD-Version” service parameter.
OUT errorCode The System Management service error code. This

value is only valid if the service failed, and the
function returned SIL_NEGATIVE_CONFIRM.

Chapter 3 SIL Function Calls

Fieldbus Stack Interface Reference Manual 3-54 © National Instruments Corporation

silFindTagReply System Management Calls

Continued

Return Values
Zero on success, less than zero on error.

Description
This call performs a System Management Find Tag Reply request. This call should be
made in response to a Find Tag Query indication, and the queryID, desc,
destAddress, and type parameters should be copied from the indication parameters.
The following table lists the parameters that must be filled in depending on the value of
type:

Value of type Parameters to be Filled In

FIND_PD deviceID

FIND_VFD vfd, pathInfo, moreVcr,

odVersion

FIND_FB vfd, pathInfo, moreVcr

odVersion, odIndex

FIND_FB_PARAM vfd, pathInfo, moreVcr,

odVersion, odIndex

For a description of each of the parameters, refer to the Fieldbus Foundation System
Management Services specification. Note that the pathInfo parameter is a list of
indices in the Network Management Information Base (NMIB) for VCRs that can be
used to access the object of the Find Tag search. If the list is too long to be placed in a
single packet, the SIL internally reduces the size of the list and sets the moreVcr
parameter to TRUE. The call still succeeds.

This call is synchronous.

Note: The return value of the call indicates only whether the request was sent.

Chapter 3 SIL Function Calls

© National Instruments Corporation 3-55 Fieldbus Stack Interface Reference Manual

silFindTagReply System Management Calls

Continued

Possible Errors
SIL_BAD_DESCRIPTOR Descriptor was invalid.
SIL_RESOURCES No RAM available.
SIL_NEGATIVE_CONFIRM A negative confirmation occurred.

© National Instruments Corporation 4-1 Fieldbus Stack Interface Reference Manual

Callback Functions

Chapter

4
This chapter describes the callback functions of the Stack Interface
Library.

Confirmation Callback Function

Confirmations are responses from the stack about a previous call.
When a confirmation enters the stack from the bus, the stack informs
the SIL. If the original call was an asynchronous call, the SIL calls the
your confirmation callback routine, filling in the appropriate parameters
for the call. In order for this to happen, the confirmation callback
routine must have been previously registered with silOpen.

The confirmation callback routine must take the following parameters:

void confirmCallback(silDesc_t desc, uint16 vcr,

userData_t userData, uint8 success)

The userData parameter is an arbitrary pointer that you pass in
during the initial request call.

A nonzero success parameter indicates a successful call. If the call
is successful, then any pointers passed in as part of the initial request
are filled with data. If the call is unsuccessful (success is set to
zero), then the errInfo pointer specified in the initial request (if any)
is filled with the error information.

Chapter 4 Callback Functions

Fieldbus Stack Interface Reference Manual 4-2 © National Instruments Corporation

Indication Callback Function

Indications are messages from the stack about something other than the
previous call. When an indication enters the stack from the bus, the
stack informs the SIL. If you registered an indication callback to
silOpen, then the SIL calls your indication callback routine, filling in
the appropriate parameters for the call.

If the indication requires the data pointer (see Table 4-1), or if the
indication requires a response from the user, the SIL sets the
needResponse parameter to TRUE (nonzero). If needResponse
is TRUE, you must call silResponse when indication processing is
complete. This silResponse call serves the dual purpose of sending
needed data to the requester, and informing the SIL that the data
buffer can be reused.

Note: If you do not call silResponse when needResponse is nonzero, all of
the reserved memory is eventually used up, and you will stop receiving
indications.

The indication callback routine must take the following parameters:

void indicationCallback(silDesc_t desc, uint16 vcr,

uint16 userData,

silFunctionCode_t fCode,

uint8 needResponse, uint16 index,

uint16 subindex, uint32 extra,

void *data, uint8 dataLength)

The meaning of the parameters listed after needResponse is
summarized in Table 4-1, by function code. The data structures
referred to are listed in the include file, silext.h.

Chapter 4 Callback Functions

© National Instruments Corporation 4-3 Fieldbus Stack Interface Reference Manual

Table 4-1. Meaning of Indication Callback Parameters

Function (fCode) Parameter Meaning

FMS_INITIATE index
subindex
extra
data
dataLength

Unused
Unused
Unused
Pointer to silInitiateInd_t
Size of the data structure
silInitiateInd_t

FMS_ABORT index
subindex
extra
data
dataLength

locally_generated (see FMS)
abort_id (see FMS)
reasonCode (see FMS)
Unused
abort_detail (see FMS)

FMS_REJECT index
subindex
extra
data

dataLength

Detected locally: 0=false 1=true
Reject PDU type (0-4) (see FMS spec)
Reject Code (0-6) (see FMS spec)
userData for original call if confirmed
service; otherwise NULL
Unused

FMS_READ index
subindex
extra
data
dataLength

Index of item to be read
Subindex (if any) of item to be read
Unused
Pointer to buffer for response
Size of buffer for response

FMS_WRITE index
subindex
extra
data
dataLength

Index of item to be written
Subindex (if any) of item to be written
Unused
Data to be written
Length of data to be written

Chapter 4 Callback Functions

Fieldbus Stack Interface Reference Manual 4-4 © National Instruments Corporation

Table 4-1. Meaning of Indication Callback Parameters (Continued)

Function (fCode) Parameter Meaning

FMS_GET_OD index

subindex
extra

data

dataLength

Index (or start_index, depending on
do_multiple below)
Form (1=long form, 0=short form)
do_multiple (1=get multiple ODs, 0=get a single
OD)
Pointer to buffer for response. This buffer is of
type silGetODResponse_t, and the data
field is initialized to point to the space for your
response.
Size of silGetODResponse_t

FMS_INFO_REPORT index
subindex
extra
data
dataLength

Index
Subindex if any
Unused
The info report data
The length of the info report data

FMS_EVENT_NOTIFY index
subindex
extra
data
dataLength

Index of event
Unique event number
Unused
The event notify data
The length of the event notify data

FMS_ACK_EVENT index
subindex
extra
data
dataLength

Index of event
Unique event number
Unused
Unused
Unused

FMS_ALTER_EVENT_

MONITORING

index
subindex

extra
data
dataLength

Index of event
Enable/disable flag:
0=disable, nonzero=enable
Unused
Unused
Unused

Chapter 4 Callback Functions

© National Instruments Corporation 4-5 Fieldbus Stack Interface Reference Manual

Table 4-1. Meaning of Indication Callback Parameters (Continued)

Function (fCode) Parameter Meaning

FMS_IDENTIFY index
subindex
extra
data

dataLength

Unused
Unused
Unused
Pointer to structure of type
silIdentifyResponseType for response
data
sizeof (silIdentifyResponse_t)

FMS_STATUS index
subindex
extra
data

dataLength

Unused
Unused
Unused
Pointer to structure of type
silStatusResponse_t
sizeof(silStatusResponse_t)

SM_FIND_TAG_QUERY index
subindex
extra
data

dataLength

Unused
Unused
Unused
Pointer to structure of type
silFindTagQueryInd_t
sizeof(silFindTagQueryInd_t)

SM_FIND_TAG_REPLY index
subindex
extra
data

dataLength

Unused
Unused
Unused
Pointer to structure of type
silFindTagReplyInd_t
sizeof(silFindTagReplyInd_t)

SM_FB_START index
subindex
extra
data
dataLength

OD Index of FB to start
Unused
VFD pointer in which the FB resides
Unused
Unused

Chapter 4 Callback Functions

Fieldbus Stack Interface Reference Manual 4-6 © National Instruments Corporation

Table 4-1. Meaning of Indication Callback Parameters (Continued)

Function (fCode) Parameter Meaning

FMS_READ_TYPE index
subindex
data

datalength

Index of the object to be read

Subindex (if any) of the item to be read

Pointer to the buffer for the response. This
buffer is of type
silReadWithTypeResponse_t

sizeof(silReadWithTypeResponse_t
)

FMS_WRITE_TYPE index
supindex
data
dataLength

Index of object to be written

Subindex (if any) of the object to be written

Data to write to the object

Size of data to write to object

FMS_DEF_VARLIST data

dataLength

Pointer to the buffer for the response. This
buffer is of type silDefineVarListInd_t

sizeof(silDefineVarListInd_t)

FMS_DEL_VARLIST index Index of variable list to be deleted

FMS_GEN_INIT_
DOWNLOAD

index Index of domain to be downloaded

FMS_GEN_DOWNLOAD_
SEGMENT

index

subindex

data
dataLength

Index of the domain, one of whose segments is
being downloaded

moreFollows—nonzero if more segments are to
follow

Segment data

Number of bytes of the segment data

FMS_GEN_TERM_DOWN
LOAD

index Index of the domain whose download is being
terminated. Notice that calling silResponse
is required for this indication, and that the
“success” parameter to silResponse will be
sent as the “final result” parameter in the
response.

Chapter 4 Callback Functions

© National Instruments Corporation 4-7 Fieldbus Stack Interface Reference Manual

SilResponse Function

The silResponse function, provided by the SIL, has the following
prototype:

int32 silResponse(silDesc_t desc, uint16 vcr,

uint16 userData, uint8 success,

cnfErrorType_t *err, void *data,

uint8 dataLength)

If the needResponse parameter to the indication callback was set to
a nonzero value, you must call silResponse after you have
processed the indication. The first three parameters are used to identify
the indication which is being responded to. Therefore, if the desc,
userData, and vcr parameters to silResponse do not exactly
match the descriptor, invoke ID, and VCR of a current indication,
silResponse fails and returns a nonzero error code. Otherwise,
zero is returned to indicate success.

In all cases, any response data from you is copied before the call
returns, so you can safely free any allocated buffers you have after the
silResponse call returns.

You must set the remaining silResponse parameters as follows
(note that FMS Initiate response is a special case):

If call was successful:

FMS Initiate case:

Set success=1
Set data to point to the
silPositiveInitiateResponse_t structure
(dataLength is ignored)

All other cases:

Set success = 1
Pass any response data in data
Put the size of the data into dataLength
(the value of err is ignored by the SIL)

Chapter 4 Callback Functions

Fieldbus Stack Interface Reference Manual 4-8 © National Instruments Corporation

If the call failed:

FMS Initiate case:

Set success=0
Set data to point to the
silNegativeInitiateResponse_t structure
Fill in only the errInfo portion of the structure—the remainder
is filled in by the stack
(dataLength is ignored)

All other cases:

Set success = 0
Put the error information into err
(data and dataLength are ignored)

© National Instruments Corporation A-1 Fieldbus Stack Interface Reference Manual

Sample Program
A

Appendix

This appendix contains a sample program using the Stack Interface Library.

/* siltest.c - a sample program using the Stack Interface Library */

/* Copyright 1995 National Instruments Corporation */

/*

 This program is a simple example program which exercises the common

 FMS functions of the stack: Initiate, Read, Write, GetOD, Abort. It

 will execute these functions in sequence in response to an operator

 keystroke. The results from the Read and GetOD calls will be displayed

 on the screen in hex form.

 The program also polls for incoming indications and briefly

 displays them.

 This program can be compiled as a QuickWin application under Microsoft

 Visual C++ 1.5. Using it with other compilers may require

 some porting.

*/

#include <windows.h>

#include <io.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <silext.h>

/* defines */

#define SUBINDEX 255 /* subindex to use on read/writes */

#define INDICATION_BYTES 512 /* bytes to reserve for incoming

indications */

/* Made-up parameters to FMS initiate */

Appendix A Sample Program

Fieldbus Stack Interface Reference Manual A-2 © National Instruments Corporation

#define OD_VERSION 0x1234

#define PROFILE 0x56

#define ACCESS_PROTECTION 0

#define PASSWORD 0x78

#define ACCESS_GROUPS 0x9a

/* Made-up parameter to FMS Abort */

#define REASON_CODE 2

/* globals */

uint16 gVcr = 0;

/* forward declarations */

extern void hexDump(char *data, uint16 len);

main()

{

 silDesc_t desc1 = 0, desc2 = 0;

 int32 r;

 uint8 dataLength;

 uint8 numObjs;

 bool_t moreFollows;

 char data[255];

 silInitiateResponse_t initResp;

 silFunctionCode_t fcode;

 uint32 extra;

 cnfErrorType_t err;

 uint8 needResponse;

 bool_t success;

 uint16 index, maxIndex;

 uint16 startIndex;

 uint16 tmpsubindex;

 uint16 tmpindex;

 uint16 userData;

 uint16 vcr;

 char str[80];

 /* Open a descriptor. We specify how many bytes to hold */

 /* indications, and since we will only poll, we will pass NULL for */

 /* the callback functions, and NULL for the pointer to the */

 /* Window handle. */

 if (r = silOpen(0, 0, INDICATION_BYTES, NULL, NULL, &desc1, NULL))

 {

 printf("silOpen failed! Error code: %ld\n", r);

 exit(1);

 }

Appendix A Sample Program

© National Instruments Corporation A-3 Fieldbus Stack Interface Reference Manual

 printf("silOpen succeeded. Descriptor returned: %d\n", desc1);

 silSetTimeout(desc1, 3000); /* 3000 milliseconds = 3 seconds */

 printf("Enter VCR number to use for FMS calls: ");

 gets(str);

 gVcr = atoi(str);

 printf("Enter starting OD index: ");

 gets(str);

 index = startIndex = atoi(str);

 printf("Enter highest OD index: ");

 gets(str);

 maxIndex = atoi(str);

 while(1)

 {

 dataLength = sizeof(data);

 /* check for incoming indications */

 if (silPollForIndication(desc1, &vcr, &userData, &fcode,

 &needResponse, &tmpindex, &tmpsubindex,

 &extra, data, &dataLength) == 0)

 {

 printf("Indication received:\n");

 printf("vcr = %d userData = %d fCode = %d\n", vcr, userData,

 fcode);

 printf("needResponse = %d index = %d subindex = %d ...\n",

 needResponse, tmpindex, tmpsubindex);

 printf("dataLength = %d\n", dataLength);

 }

 printf("Press <ENTER> to send, <p> to poll, <i> for new index, <q>

 to quit\n");

 gets(str);

 if (str[0] == 'q')

 break;

 if (str[0] == 'p')

 continue;

 if (str[0] == 'i') {

 printf(" --- Enter new index: ");

 gets(str);

 index = atoi(str);

 }

 else

 printf("FMS object index = %d\n", index);

Appendix A Sample Program

Fieldbus Stack Interface Reference Manual A-4 © National Instruments Corporation

 /* Try an initiate call */

 printf("Trying to initiate VCR %d\n", gVcr);

 r = silInitiate(desc1, gVcr, NULL, OD_VERSION, PROFILE,

 ACCESS_PROTECTION, PASSWORD, ACCESS_GROUPS,

 &success, &initResp);

 if (r)

 printf("Initiate call returned error: %d\n", r);

 else

 {

 if (success)

 {

 printf("Initiate was successful.\n");

 printf("verOD=0x%x profile=0x%x access=0x%x passwd=0x%x

 grps=0x%x\n",

 initResp.pos.versionOD, initResp.pos.profileNum,

 initResp.pos.accessProtection, initResp.pos.password,

 initResp.pos.accessGroups);

 }

 else

 {

 printf("Initiate was rejected.\n");

 /* Print some of the response parameters */

 printf("err=0x%x maxSendLow=%d maxReceiveLow=%d

 features=0x%x,%x,%x,%x,%x,%x\n",

 initResp.neg.errorInfo, initResp.neg.maxFMSSendLow,

 initResp.neg.maxFMSReceiveLow,

 initResp.neg.features[0],

 initResp.neg.features[1],

 initResp.neg.features[2],

 initResp.neg.features[3],

 initResp.neg.features[4],

 initResp.neg.features[5]);

 }

 }

 /* Try a read call */

 dataLength = sizeof(data);

 printf("Trying to read index %d\n", index);

 r = silRead(desc1, gVcr, NULL, index, SUBINDEX, data, &dataLength,

 &err);

 if (r)

 printf("Read call failed: SIL error %d\n", r);

 else

 {

 if (err.fieldsPresent)

Appendix A Sample Program

© National Instruments Corporation A-5 Fieldbus Stack Interface Reference Manual

 {

 printf("Negative response received. Class=%d code=%d\n",

 err.errorClass, err.errorCode);

 }

 else

 {

 printf("Read call succeeded!\n");

 printf("dataLength = %d (0x%x)\n", dataLength, dataLength);

 printf("Data:\n");

 hexDump(data, dataLength);

 }

 }

 /* Try a Get OD call */

 dataLength = sizeof(data);

 printf("Trying a GetOD on index %d\n", index);

 r = silGetOD(desc1, gVcr, NULL, 0, index, 0, &numObjs, data,

 &dataLength,

 &moreFollows, &err);

 if (r)

 printf("GetOD call failed: SIL error %d\n", r);

 else {

 if (err.fieldsPresent) {

 printf("Negative response received. Class=%d code=%d\n",

 err.errorClass, err.errorCode);

 }

 else {

 printf("GetOD call succeeded!\n");

 printf("dataLength = %d (0x%x)\n", dataLength, dataLength);

 printf("Data:\n");

 hexDump(data, dataLength);

 }

 }

 /* Try a Write call */

 dataLength = sizeof(data);

 /* Create some data */

 memset(data, 0x80, dataLength);

 printf("Trying a Write on index %d\n", index);

 r = silWrite(desc1, gVcr, NULL, index, SUBINDEX, data, dataLength,

 &err);

Appendix A Sample Program

Fieldbus Stack Interface Reference Manual A-6 © National Instruments Corporation

 if (r)

 printf("Write call failed: SIL error %d\n", r);

 else

 {

 if (err.fieldsPresent)

 {

 printf("Negative response received. Class=%d code=%d\n",

 err.errorClass, err.errorCode);

 } else

 {

 printf("Write call succeeded!\n");

 printf("Positive response received.\n");

 }

 }

 /* Try an abort call */

 printf("Trying an Abort on VCR %d\n", gVcr);

 r = silAbort(desc1, gVcr, REASON_CODE);

 if (r)

 printf("Abort call failed: %d\n", r);

 else

 printf("Aabort call succeeded.\n");

 /* Increment the object index we're testing with */

 if (++index > maxIndex)

 index = startIndex;

 } /* close while(1) */

 silClose(desc1);

 return 0;

}

void hexDump(char *inData, uint16 len)

{

 uint16 i;

 unsigned char *data = (unsigned char *)inData;

 for (i=0; i < len; i++) {

 printf("%02x ", data[i]);

 if ((i) && (!(i%10)))

 printf("\n");

 }

 printf("\n");

}

© National Instruments Corporation B-1 Fieldbus Stack Interface Reference Manual

Appendix B
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to
6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
questions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded instructions
on how to use the bulletin board and FTP services and for BBS automated information, call
(512) 795-6990. You can access these services at:

United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 1 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet host, ftp.natinst.com, as anonymous and use
your Internet address, such as joesmith@anywhere.com, as your password. The support
files and documents are located in the /support directories.

FaxBack Support

FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following numbers:

(512) 418-1111 or (800) 329-7177

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
VISA: visa.support@natinst.com

Fax and Telephone Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country,
contact the source from which you purchased your software to obtain support.

Telephone Fax
Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310 519 622 9311
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 71 11
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 48301892 02 48301915
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of this form as a reference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand Model Processor

Operating system (include version number)

Clock Speed MHz RAM MB Display adapter

Mouse yes no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each
item. Complete a new copy of this form each time you revise your software or hardware
configuration, and use this form as a reference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

National Instruments Products
Interrupt Level of Hardware ___

DMA Channels of Hardware ___

Base I/O Address of Hardware ___

Other Products
Computer Make and Model __

Microprocessor ___

Clock Frequency __

Type of Video Board Installed ___

Operating System ___

Operating System Version __

Operating System Mode __

Programming Language __

Programming Language Version ___

Other Boards in System ___

Base I/O Address of Other Boards __

DMA Channels of Other Boards __

Interrupt Level of Other Boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our
products. This information helps us provide quality products to meet your needs.

Title: NI-SHELL Function Reference Manual

Edition Date: March 1996

Part Number: 321015B-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02 MS 53-02
Austin, TX 78730-5039 (512) 794-5678

